
Problem solving strategies
Part 1

Tara Templin



Approaches to “prove/show” stuff with math
Direct proof (if a, then b)

Related: Proof by cases (enumerate all the cases and show true everywhere)

Proof by induction (show true for n=1, if true for n=k-1, then also n=k)

Proof by contradiction (suppose if not a, then b. Show ridiculous. Thus if a, then b)

Proof by contrapositive (if not b, then not a)

Proof by construction (e.g. counter example. E[X] always defined? No, cauchy)



Example Problem: Direct Proof
Example: Show that the sum of any two odd integers is even



Example Problem: Direct Proof
Example: Show that the sum of any two odd integers is even

Let a and b be any two odd integers, so a = 2k + 1 and b = 2l + 1 for any k,l 
integers.

A + b = (2k + 1) + (2l + 1) = 2k + 2l + 2 = 2 * (k + l + 1)



Example Problem: Proof by Contradiction
Prove that if a2 is even, then a is even, for all integers a



Example Problem: Proof by Contradiction
Prove that if a2 is even, then a is even, for all integers a

Suppose by contradiction that the proposition is not true.

That is, there is a number a such that a2 is even but a is not even -> a is odd. 

So a = 2k + 1 for some integer k

This implies that a2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2+2k) +1

That is, a2 is odd. This is a contradiction to the assumption that a2 is even.

So the supposition must be wrong. The proposition is true. 



Approach for Proof by Induction
To prove something like, P(n) is true for n = 0, 1, 2, 3, … (integers) it is enough to 
prove:

1) The base case: prove that P(0) is true
2) The inductive case: if P(n-1) is true (the “inductive hypothesis”), then prove 

that P(n) must also be true.



Example Problem: Proof by Induction
Show that Pr(A1...An) = Pr(A1)Pr(A2|A1)Pr(A3|A1A2)...Pr(An|A1...An-1)



Example Problem: Proof by Induction
Show that Pr(A1...An) = Pr(A1)Pr(A2|A1)Pr(A3|A1A2)...Pr(An|A1...An-1)

Base case: Pr(A1A2) = Pr(A1)Pr(A2|A1) [from the definition of conditional prob]

Now set up the Inductive hypothesis: Assume the statement is correct for k = n - 1



Example Problem: Proof by Induction
Show that Pr(A1...An) = Pr(A1)Pr(A2|A1)Pr(A3|A1A2)...Pr(An|A1...An-1)

Base case: Pr(A1A2) = Pr(A1)Pr(A2|A1) [from the definition of conditional prob]

Inductive hypothesis: Assume the statement is correct for k = n - 1

Pr(A1...An-1) = Pr(A1)Pr(A2|A1)...Pr(An-1|A1...An-2)

Let “A1” = A1...An-1 and “A2”=An

Pr(A1...An) = Pr(A1...An-1) Pr(An|A1...An-1) [definition of conditional prob]

Pr(A1...An) = Pr(A1)Pr(A2|A1)Pr(A3|A1A2)...Pr(An|A1...An-1) [inductive hypothesis]



Common Summations to Know
Very common to work with sums in discrete statistics

Recognize ways to simply or manipulate the summation when you can

Source: https://en.wikipedia.org/wiki/Summation

More on index shifts in a moment!

https://en.wikipedia.org/wiki/Summation


Common Summations to Know

Source: https://en.wikipedia.org/wiki/Summation

https://en.wikipedia.org/wiki/Summation


Common Summations to Know

Source: https://en.wikipedia.org/wiki/Summation

There are many series and infinite sums. Let’s revisit index 
shifts with the commonly used “geometric series”

https://en.wikipedia.org/wiki/Summation


Application: Geometric Series
Both of these are infinite geometric series: 

The only difference is an index shift.

Remember the solution of a finite/infinite geometric series?



Application: Geometric Series
Both of these are infinite geometric series: 

The only difference is an index shift.

Remember the solution of a finite/infinite geometric series?

When working with a sum, look to use change of variables to solve, e.g.:



Approaches to Calculate Expected Values
A common scenario is finding the expected value of an unfamiliar distribution:

- Use basic properties of expected values
- E.g. Linearity (E[aX+Y]=aE[X]+E[Y])  

- Use change of variables to match common distributions with known means
- If the distribution can be transformed into a known discrete PDF, use the fact 

that discrete PDFs sum to 1
- Remember, E(f(X)) does not usually equal f(E(X))

- Use Law of the unconscious statistician

- Define an indicator variable to denote if an event occurs: E[1(A)] = P(A)
- Look for independence: E[XY]=E[X]E[Y]



Example Problem: Expected Values
Let X be a discrete RV that takes on only nonnegative integer values. Show 
that E(X) = ∑∞

i=0 Pr(X > i) [Rice, 3rd]

From the definition of a discrete probability distribution: E[X] = ∑ xi * Pr(X=xi)

E[X] = 0 * Pr(X=0) + 1 * Pr(X=1) + 2 * Pr(X=2) +  3 * Pr(X=3) + …

E[X] = Pr(X=1) + [Pr(X=2) + Pr(X=2)] + [Pr(X=3) + Pr(X=3) + Pr(X=3)] + …

E[X] = [Pr(X=1)+Pr(X=2) +Pr(X=3)...] + [Pr(X=2)+Pr(X=3)...] + [Pr(X=3)+...] + …

E[X] = Pr(X >=1) + Pr(X >= 2) + Pr(X >= 3) + … = ∑∞
i=1 Pr(X >= i) = ∑∞

i=0 Pr(X > i)



Example Problem: Expected Values
Apply the previous result to find the mean of a geometric RV. [Rice, 3rd]

Geometric RV = “The probability distribution of the number Y = X − 1 of failures 
before the first success, supported on the set { 0, 1, 2, 3, ... }”

Pr(X > i) = ∑∞
j=i+1[p*(1-p)j-1] 

               = p*(1-p)i∑∞
k=0[(1-p)k] 

               = p*(1-p)i*1/(1-(1-p)) = (1-p)i

Apply result: E(X) = ∑∞
i=0 Pr(X > i) =∑∞

i=0(1-p)i= 1/(1-(1-p)) = 1/p [geom series]



Example Problem: Expected Values/Index shifting
We can also use index shifting:

First step: probability of a discrete var

Second step: Interchange order of summation bc can sum up however we want. 

Third step: Recognizes it’s the definition of an expectation.



Example Problem 2
If U1, ..., Un are iid Unif(0, 1) , find E(U(n)−U(1)), where U(n) = max{U1, ..., Un} and 
U(1) = min{U1, ... , Un}. [Rice, 3rd]

Want the expectation of a function of RVs. Two approaches: (1) Could define a 
new RV, Z = U(n) − U(1), and then use the formula for an expectation and hope it 
works out. 



Example Problem 2
If U1, ..., Un are iid Unif(0, 1) , find E(U(n)−U(1)), where U(n) = max{U1, ..., Un} and 
U(1) = min{U1, ... , Un}. [Rice, 3rd]

Want the expectation of a function of RVs. Two approaches: (1) Could define a 
new RV, Z = U(n) − U(1), and then use the formula for an expectation and hope it 
works out. 

(2) We know expectation is a linear operator, so E(U(n) − U(1))=E(U(n)) − E(U(1)). We 
know a general formula for f(U(n)), and f(U(1)) but it’s still terrible, so let’s keep 
using info. We have U1, ..., Un are iid uniform U(0, 1), and that is key. 

We know U(k)~Beta(k,n+1-k). If X ~ Beta(a,b), then E[X] = a/(a+b)

E(U(n) − U(1))=E(U(n)) − E(U(1)) = n/(1+n) - 1/(n+1) = (n-1)/(n+1)



Application: Sums of Random Variables
The sum of exponential random variables is often used in stochastic processes, 
particularly anything involving queueing. 

Imagine a network of computers sending jobs to a compute node or towns sending 
people to a central hospital. 

Each computer or town has a rate parameter of sending compute jobs or people, 
and the "load" of the compute node or hospital is the sum of those random 
variables. 

The distribution of that sum can be used to estimate wait times for patients.



Application: Order Statistics
One way that order statistics can be used is for modeling government 
procurement. 

There's often a bidding procedure that happens where companies bid for gov't 
health sector projects and the lowest-cost bid will win. 

If the bids are independent of each other (which they often aren't, so you see how 
covariance can get interesting!), then, for each bid X_i, the distribution of U = 
min{X1, . . . , Xn} tells the gov't what distribution of costs to expect for their 
projects that have project bidding events.


